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Abstract 

The concept of concentrated pigment preparations (pre-
dispersions) for inks employed in digital printing, such as 
ink jet, is increasingly becoming popular in the market. 
The static surface tension is often given as a quality 
parameter of these preparations and inks based thereon. 
However, wetting processes in ink jet, for example, 
wetting of the printhead interior, drop formation, or 
interaction with the substrate, generally occur within a very 
short time (microsecond to millisecond time scale, which 
is far outside of equilibrium for most cases).1 

Therefore, these ultrafast wetting processes can be 
understood with the help of the dynamic surface tension 
rather than by measuring the static surface tension. DSTM 
(dynamic surface tension measurements) provides a 
modern tool for a clever selection of appropriate dis-
persants with a good dynamic wetting behavior. It also 
allows the formulation of optimized pigment preparations 
employing these dispersants, thus enabling the manu-
facturing of high-quality pigmented inks for high-
performance ink jet printing. 
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Figure 1. Comparison between dynamic and static surface 
tension 

DSTM—Principle 

The bubble pressure is monitored during a time interval 
starting with the time when the bubble first emerges from 
the orifice until bubble release, and the dynamic surface 
tension σd is calculated based on the difference between 
Pmax and hydrostatic pressure P0 and the capillary radius. 
Upon increasing the gas flow (bubble rate), the surface age 
of the bubbles is decreased, and thus, the time for the 
surfactant molecules to migrate to the bubble surface and 
to absorb is short. Consequently, the coverage of the 
surfactant on the surface becomes more and more 

incomplete and the surface tension increases with 
decreasing bubble age. 
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Figure 2. Principle of dynamic surface tension measurements 
with the maximum bubble pressure method 
 
 

Choice of the Appropriate Surfactant 

a) Oligomeric Surfactants 
The dynamic surface tension of a surface-active 

compound depends on several parameters, such as 
  concentration 
  molecular weight 
  polarity/charge 
  chemical structure 
  diffusion coefficients, etc. 
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Figure 3. Influence of surfactant structure on diffusion 
coefficients and surface coverage per unit: “head-tail” vs. 
“gemini” structure (CMC = critical micelle concentration) 
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To understand the relationship between surfactant 
structure and the dynamic wetting behavior is important 
for optimizing pigment preparation and ink jet ink 
properties, choosing the right surfactant in the appropriate 
concentration. 

An oligomeric “head-tail” surfactant may form 
micelles or vesicles with a small diffusion coefficient. In 
addition, such molecules normally have a small surface 
coverage, leading to a higher surface tension, especially at 
low surface ages (Chart 1). 
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Chart 1. Dynamic surface tension of a “head-tail” and a 
“gemini” surfactant (each 0.1% in aqueous solution) 

 
In contrast, “gemini” surfactants do not form micelles 

and can have a larger surface coverage, which is 
demonstrated by a low dynamic surface tension even at 
low concentrations. 

b) Polymeric Surfactants 
Table 1 compiles static surface tension data for 

different amphiphilic random co-polymers with either 
different ratios of the hydrophobic (A) to the hydrophilic 
(B) moiety or different substitution patterns. 

Table 1. Chemical description and static surface 
tension of different amphiphilic co-polymers 
Polymer A/B Substitution Static Surface 

Tension [mN/m] 
1 1/1 none 49 

2 2/1 none 45 

3 2/1 Benzyl Ester 41 

4 2/1 2-Ethylhexyl 
Ester 

35 

5 2/1 Lauryl Ester 35 

 
 
Chart 2 shows the plot of the dynamic surface tension 

versus surface age for these polymers. With increasing 
hydrophobic character of the polymers either by varying 
the A/B ratio or by additionally introducing hydrophobic 
ester groups, the diffusion constants, and thus the dynamic 
wetting ability, can be increased. Interestingly, the lauryl 
ester and the 2-ethylhexyl ester end up with the same static 
surface tension although they exhibit a completely 
different dynamic wetting behavior. 
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Chart 2. Dynamic surface tension of several amphiphilic co-
polymers (each 1% in aqueous solution) 

Pigment Preparations 

To satisfy the stringent demands of modern, high-
performance ink jet printing, several parameters of the 
pigment preparation and the resulting ink need to be 
optimized (Figure 4).2 One of the key parameters is the 
dynamic surface tension. 

To investigate the influence of different types of 
surfactants in aqueous pigment dispersions, pigment 
preparations based on Colour Index P.Y. 155 were 
prepared and the static and the dynamic surface tension 
were measured (Table 2, Chart 3). 
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Figure 4. Numerous parameters have to be optimized for high-
quality pigment preparations and ink jet inks based thereon 

 

Table 2. Dispersant system and static surface tension of 
Preparations 1 to 3 (2% P.Y. 155) 

Preparation 
 

Dispersant 
System 

Static Surface 
Tension [mN/m] 

1 0.25% Polymer 60 

2 0.25% Polymer + 
0.1% Surfactant 

50 

3 0.25% Polymer + 
0.1% Wetting 

Agent 

36 
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Chart 3. Dynamic surface tension of aqueous pigment 
preparations based on Colour Index P.Y. 155 (2% pigment 
content) employing different dispersant systems 

 
 
Preparation 1, solely containing the polymeric 

dispersant (0.25%), shows no significant dynamic wetting 
behavior. Preparation 2, additionally containing 0.1% of a 
surfactant, shows only a small effect, decreasing the 
surface tension to below 70 mN/m only at surface ages 
higher than 500 ms. In contrast, Preparation 3, additionally 
containing 0.1% of a wetting agent instead, exhibits 
excellent wetting action even at low surface ages. 

Taking into consideration these findings, pigment 
preparations for ink jet printing can be optimized such as 
those shown in Table 3. The pigment preparations all 
exhibit excellent flowability properties due to their low 
viscosity, which does not significantly increase upon 
storage at elevated temperature, proving the shelf-life 
stability of the preparations.3 

 

Table 3. Optimized aqueous pigment preparations for 
ink jet printing (physical data represent typical values) 

Colour 
Index 

Pigment 
Content 

d50 [nm]a Viscosity 
[mPas] 

P.Y. 155 20% 100 14.4 

P.R. 122 20% 88 16.5 

P.B. 15:3 20% 79 22.9 
ameasured by capillary hydrodynamic fractioning (CHDF) 

 
 
Chart 4 shows the dynamic surface tension curves for 

the cyan pigment preparation based on Colour Index P.B. 
15:3. Before optimization of the formulation, the surface 
tension in the relevant time frame (below 100 ms) is 
relatively high, whereas after modification, an excellent 
wetting can be observed even for small surface ages. 

It is noteworthy that the modified pigment preparation 
has a kind of “bump” in the curve. Due to multiple 
surfactants typically being present in an ink, competing 
effects can cause the surface tension decrease with surface 
age, then increase and then decrease again as one 
surfactant reaches the surface only to be displaced and 
replaced by another. 

A standard test ink prepared from the unmodified cyan 
preparation shows irregular printouts with a number of 

nozzles failing due to insufficient wetting and ink flow in 
the cartridge interior. In contrast, the ink prepared with the 
optimized pigment preparation gives regular printouts of 
excellent quality. 
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Chart 4. Dynamic surface tension of the cyan pigment 
preparation (2% pigment content) before and after optimization 

Conclusions 

Wetting processes in ink jet occur in a very short time 
(milliseconds to microseconds). DSTM is a tool to better 
understand these processes and to differentiate between 
dispersants and “fast” wetting agents with a good dynamic 
wetting characteristic. By choosing the appropriate 
surfactant system in the optimum concentrations, one can 
enhance the performance of pigmented inks in modern ink 
jet printing. 
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